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CHAPTER THREE: BACKWARD λ-CONVERSION  

 

We have informally shown how you go about finding the interpretations of expressions by 

reasoning about the the grammar, the types and the interpretations of other exptressions.  We 

will do that now more formally by showing how to do this via backward λ-conversion. 

 

3.1. Finding the meaning of attributival old 
 

In the previous chapter  I sketched how you go about finding the interpetation of a 

constituent. 

I will be more precise about that here.  Look at the example in (1): 

 

(1) a. Ronya is an old cat 

 

We are interested in finding the interpretation of old.   

But we do that in the context of a grammar with syntactic and semantic assumptions.   

What I am interested in is how you find an interpretation given your grammatical 

assumptions. 

 

So look at (1).  First we assume a syntactic analysis, for instance, the following: 

 

(1) b.  IP 

 

DP  I’ 

 

Ronya    I  DP[PRED] 

      

   is DET  NP 

 

   an AP  NP 

 

   old   cat 

 

Secondly, we determine the truth conditions of (1). For instance the following: 

 

(1) c. CAT(RONYA) ∧ OLD(RONYA) 
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Thirdly, we make a grammatical assumption, which is well motivated, but more importantly, 

useful for the present example. 

And this assumption is that the following two tree structures have the same interpretation: 

 

  I’ 

 

    I  DP[PRED] 

      

   be DET[PRED] NP 

 

   an AP  NP 

 

   old   cat 

 

  and 

    NP 

 

    AP  NP 

 

   old   cat 

 

Next we make some assumptions about the relation between syntax and semantics. 

These are assumptions that are grammar specific and in fact assumptions some of which we 

will modify later. 

 

Assumption 1:  Fixed Type Assignment 

 We associate with every syntactic category one and only one semantic type, and all 

expressions of that syntactic category are semantically interpreted as expressions of 

that semantic type. 

 

Assumption 2:  The interpretation of unary branching trees is identity 

     The interpretation of binary branching trees is functional application 

 

Assumption 3: The grammar tells you for each binary tree what is the function and  

     what is the argument. 

 

Not all semantically interpreted grammar models adhere to assumption 3, some allow 

flexibility in fixing which is the function and which is the argument.  In these classnotes I 

will adhere to assumption 3, mainly for didactic reasons. 

 

With respect to assumption 2, we will see later see other grammatical operations, in 

particular Function composition and Abstraction.    

Also we will soon discuss type shifting operations which change not so much assumption 2 

itself, but how we should interpret it. 

 

Assumption 1 is the assumption that underlied Richard Montague’s pioneering work on 

semantically interpreted grammars, in particular in his posthumously ublished paper PTQ, 

Montague 1973, The Proper Treatment of Quantification in ordinary english. 

We will adhere to this assumption for the moment, again for didactic reasons, but drop it 

shortly when we introduce type shifting operations. 
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We go to the semantic interpretation of our tree. 

 

Let us assume, for this example, that we interpret category DP as type e, and that the lexical 

item ronya is interpreted as RONYA ∈ CONe.   

Then the tree : 

   DP 

  | 

            ronya 

   

 is also interpreted as RONYA, by assumption 2.   

 

Also by assumption 2 the tree 

 

   IP 

 

  DP  I’ 

 

is interpreted by function application, and we know that the interpretation of the IP is 

CAT(RONYA) ∧ OLD(RONYA) of type t, which fixes t as the type for IP. 

 

From this it follows that  in this tree I’ is the function and DP is the argument, because type e 

is not a type of function. 

Moreover, it also follows that the type of I’ is <e,t>, because the input of the function is the 

argument, of type e and the output is type t. 

 

We have derived the following information: 

 

                         IP, t, CAT(RONYA) ∧ OLD(RONYA) 

 

 
                    APPLY 

       DP,e,RONYA                             I’,<e,t>,α 

 

We are interested in determining the interpretation of I’.  We know it has to be an expression 

of type <e,t>.  Given the information that we have, we have to solve the following equation: 

 

(α(RONYA))  = ((CAT(RONYA)) ∧ (OLD(RONYA))) 

 

To solve this equation we need to bring the right hand side in the same form as the left hand 

side: an expression that applies to ronya.  We do that by backward λ-conversion. 

Backward λ-conversion is just λ-conversion: 

 

 λxβ(α)  = β[α/x] 

 

We have used this principle to simplify expressions, but it is an identity and hence can also 

be used in the other direction.     

 

CAT(RONYA) ∧ OLD(RONYA) =  

[λx.((CAT(x) ∧ (OLD(x))](RONYA) 
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How to pull ronya out: replace the two occurrences of ronya  by variable x, 

 

CAT(RONYA) ∧ OLD(RONYA) 

CAT(     x       ) ∧ OLD(      x     ) 

 

 abstract over x  

          
           λx.CAT(     x       ) ∧ OLD(      x     ) 

 

and  apply to RONYA 

 

        [λx.CAT(     x       ) ∧ OLD(      x     )](RONYA) 

 

 

 We have solved our equation, because we see that: 

 

α = λx.CAT(x) ∧ OLD(x) 

 

                         IP, t, CAT(RONYA) ∧ OLD(RONYA) 

 

 
                    APPLY 

       DP,e,RONYA                            I’,<e,t>,λx.CAT(x) ∧ OLD(x) 

 

 

Now we can go down in the tree.  At the next level we have: 

 

    I’’,<e,t>,λx.CAT(x) ∧ OLD(x) 

 

 

   I  DP[PRED] 

   | 

             be 

 

Now we use the assumption we made above:  the interpretation of the I’ is the same as the 

interpretation of the DP[PRED]. Since I’ is interpreted at type <e,t>, this means that 

DP[PRED] must be interpreted as type <e,t> as well.   [Note that with the fixed type 

assumption this means that we treat the categories DP and DP[PRED] as different 

categories, since we will later assume that DP is interpreted as type <<e,t>,t>.  We come 

back to these issues in later chapters.] 

 

 

    I’’,<e,t>,λx.CAT(x) ∧ OLD(x) 

 

 

   I  DP[PRED],<e,t>,λx.CAT(x) ∧ OLD(x) 

   | 

             be 
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This means that the copula I  must be of type <<e,t>,<e,t>>, because only a function of that 

type can resolve a functiona argument structure where either function or argument is <e,t> 

and the output is <e,t> as well, and since the interpretation of I and be is the same, we 

calculate the interpretation of be from  

 BE(λx.CAT(x) ∧ OLD(x)) = λx.CAT(x) ∧ OLD(x) 

 

We resolve this with backward λ-conversion: we need to massage λx.CAT(x) ∧ OLD(x) 

into an expression in which a function applies to it: 

  

 Replace λx.CAT(x) ∧ OLD(x) by a variable P, abstract over the variable and apply 

   the result to λx.CAT(x) ∧ OLD(x) 

 

 λP.P(λx.CAT(x) ∧ OLD(x)) 

 

And we have found the interpretation of be: 

 

 be → λP.P  of type <<e,t>,<e,t>> 

 

Thus the copula is interpreted as the identity function, meaning that it doesn’t have any 

specific semantic content (which is good). 

 With this out of the way we move to DP[PRED] 

The assumption that we made was that DP[PRED] has the same interpretation as the NP. 

 

      DP[PRED],<e,t>, λx.CAT(x) ∧ OLD(x) 

      

    DET[PRED] NP,<e,t>,λx.CAT(x) ∧ OLD(x) 

 

   an    

 

At this point we only need to observe that the semantic situation is identical to what we saw 

above one level up, so by exactly the same reasoning we derive tha DET[PRED] and 

therefore a(n) also has the interpretation λP.P 
 
 a(n) → λP.P of type <<e,t>,<e,t>> 
 
So in this situation the indefinite article is also interpreted as the identity function, 

meaning that it doesn’t have any specific semantic content (which is also good). 

So we have derived:   

 

    NP,<e,t>,λx.CAT(x) ∧ OLD(x) 

 

    AP  NP 

 

   old   cat 

 

Now, the UniqueType Assignment tells us that NP is interpreted at type <e,t>. We assume 

that cat is interpreted as CAT ∈ CON<e,t>, so we derive: 
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                  NP,<e,t>,λx.CAT(x) ∧ OLD(x) 

 

 

          AP              NP,<e,t>,CAT   

 

We have seen this situation before:  the only way we can resolve this type assignment is by 

assuming that AP is of type <<e,t>,<e,t>>: 

 

                  NP,<e,t>,λx.CAT(x) ∧ OLD(x) 

 

 

          AP,<<e,t><e,t>>         NP,<e,t>,CAT   

 

And this gives us the following equation to solve: 

 

 AP(CAT) = λx.CAT(x) ∧ OLD(x) 

 

And we solve this equation in the same way as above with backward λ-conversion: 

 

λx.CAT(x) ∧ OLD(x) 

 

We need to pull CAT out, so we replace it by a variable P, abstract over that variable and 

apply to CAT: 

 

λx.CAT(x) ∧ OLD(x)  = 

        [λPλx     .P(x) ∧ OLD(x)](CAT) 

 

And we have solved the equation, and derive with the assumption about unary branching: 

 

old → λPλx.P(x) ∧ OLD(x)  of type <<e,t>,<e,t>> 
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3.2. Finding the meaning of the determiner no 

 

We find the meaning of the determiner no in (2) in the same way, but it involves setting up 

the grammar differently from the previous example, and hence, by the assumptions,  

involves a change that must be added to the analysis of (1) above as well. 

 

(2) No cat purrs 

 

                               IP  

 

             DP                                I’  

 

DET              NP      I  VP 

 

  no               cat       e                purrs   

 

First, we will assume that the intransitive verb purr is interpreted as a constrant  

PURR ∈ CON<e,t>>, and we assume, as before that  cat is interpreted as CAT ∈ CON<e,t>.  

And we accept the usual truth conditions for the IP of type t. 

This fixes the following interpretations: 

 

                               IP t ¬∃x[CAT(x) ∧ PURR(x)] 

 

             DP                                    I’ <e,t> PURR  

 

DET     NP <e,t> CAT     I   VP <e,t> PURR 

 

i  no               cat <e,t> CAT      e λP.P       purrs <e,t> PURR   

 

 

Here we know that no cat  is not of type e.   

That means that we cannot assume that the I’ of type <e,t> is a function on the DP of type e. 

As we have seen in our intuitive example earlier, the simplest solution is to assume the 

inverse function argument structure: let the interpretation of the DP be a function on the 

interpretation of the I’, since the latter is <e,t> and the output is t, this suggests that we 

assign type <<e,t>,t> to the DP: 

 

                               IP t ¬∃x[CAT(x) ∧ PURR(x)] 

 

             DP <<e,t>,t>                             I’ <e,t> PURR  

 

DET     NP <e,t> CAT     I   VP <e,t> PURR 

 

  no               cat <e,t> CAT      e λP.P       purrs <e,t> PURR   

 

This assignment fixes also the type of the determiner.  no cannot be the argument, because 

then it must be of type e and the output would be of type t, which it isn’t. So no must be the 

function, and its argument is of type <e,t>, and output of type <<e,t>,t>, so no is of type 

<<e,t>,<<e,t>,t>>>, a relations between sets: 
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                               IP t ¬∃x[CAT(x) ∧ PURR(x)] 

 

             DP <<e,t>,t>                             I’ <e,t> PURR  

 

DET     NP <e,t> CAT     I   VP <e,t> PURR 

 

  no               cat <e,t> CAT      e λP.P       purrs <e,t> PURR   

<<e,t>,<<e,t>,t>> 

 

We need to find the interpretation of the DP no cat. 

This involves solving the equation: 

 

DP(PURR) = ¬∃x[CAT(x) ∧ PURR(x)] 

 

As before, we do this with backward λ-convertion: 

We start with: 

 

¬∃x[CAT(x) ∧ PURR(x)] 

 

and we convert PURR out: replace it by a variable, abstract over the variable, and apply to 

PURR: 

 

[λP.¬∃x[CAT(x) ∧ P(x)]](PURR) 

 

λP.¬∃x[CAT(x) ∧ P(x)  is of the right type of generalized quantifiers:  <<e,t>,t>. 

So: 

 

                               IP ¬∃x[CAT(x) ∧ PURR(x)] 

 

             DP   <<e,t>,t> λP¬∃x[CAT(x) ∧ P(x)]                            I’ PURR  

          

DET          NP<e,t>  CAT            I λP.P          VP  PURR 

 

  no <<e,t>,<<e,t>,t         cat CAT                               e λP.P       purrs PURR   

 

Also the interpretation of the determiner is derived with backward λ-conversion: 

 

DET(CAT) = λP.¬∃x[CAT(x) ∧ P(x) 

 

We start with:  

 

λP.¬∃x[CAT(x) ∧ P(x)] 

 

We convert CAT out: 

 

λQλP.¬∃x[Q(x) ∧ P(x)](CAT) 

 

and get for DET and hence for no: 
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no → λQλP.¬∃x[Q(x) ∧ P(x) 

 

 The relation that holds between two sets if their intersection is empty. 

 

This is, of course, exactly the relation we derived before. 

 

 

But now we should go back to our earlier example: 

 

(1) b.  IP t CAT(RONYA) ∧ OLD(RONYA) 

 

DP <<e,t>,t> I’ <e,t> λx.CAT(x) ∧ OLD(x) 

 

Ronya    I  DP[PRED] 

      

   is DET  NP 

 

   an AP  NP 

 

   old   cat 

 

The problem is, before we interpreted ronya as RONYA ∈ CONe and the I’with 

interpretation at type <e,t> applied to this.   

However, we cannot interpret DP no cat at type e, we must interpret it at type <<e,t>,t>. 

But then, with the fixed type assumption, we must interpret the DP ronya also at type 

<,e,t>,t>. 

But how? 

The answer is:  by solving the equation with backward λ-conversion: 

 

DP(λx.CAT(x) ∧ OLD(x))  = CAT(RONYA) ∧ OLD(RONYA) 

 

As always, we start with:  

 

 CAT(RONYA) ∧ OLD(RONYA) 

 

We convert RONYA out, replace it by a variable x, abstract and apply to RONYA: 

 

 [λx.CAT(x) ∧ OLD(x)](RONYA) 

 

However, this is not enough, because it is not of the form DP(λx.CAT(x) ∧ OLD(x)): the DP 

material is the argument, but it should be the function. 

How do we solve that? 

The answer is:  by solving the equation with backward λ-conversion: 

We convert the <e,t> predicate λx.CAT(x) ∧ OLD(x)] out by replacing it by a variable P 

 

 P(RONYA) 

  

abstracting over P 
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 λP.P(RONYA) 

 

 and applying the result to λx.CAT(x) ∧ OLD(x): 

 

 λP.P(RONYA)(λx.CAT(x) ∧ OLD(x)) 

 

With this we have found: 

 

ronya →  λP.P(RONYA) of type <<e,t>,t> 

  

 The set of all properties that RONYA has. 

 

So, while we associate with the lexical item ronya a constant RONYA ∈ CONe, we don’t 

interpret ronya as that constant (at type e), but as the expression λP.P(RONYA). 

 

Notice that we did exactly the same with old:  we associated with old a constant 

OLD ∈ CON<e,t>, but translated it as λPλx.P(x) ∧ OLD(x). 

The case is not quite the same, because it is reasonable to argue that when old  is a 

predicative adjective, AP[PRED] (as in Ronya is old) it is interpreted as OLD. 

 

But this is Montague’s interpretation strategy, it is called Generalize to the Worst Type: 

because some DPs (like no cat) need to be interpreted at the higher type <<e,t>,t>, all DPs 

need to be interpreted there.  We will soon step away from this strategy, but it is good to 

point out that it has some excellent consequences.  For instance for DP conjunction: 

Ronya and every kitten purr.   

 

We have given the interpretation for and at type DP as: 

 

 λUλTλP.T(P) ∧ U(P) 

 

If we interpret ronya as λP.P(RONYA), we can unproblematically enter the two DP 

interpretations into the schema: 

 

  λUλTλP.T(P) ∧ U(P)(λZ.∀x[KITTEN(x) → Z(x)])  = 

 

 λTλP.T(P) ∧ λZ.∀x[KITTEN(x) → Z(x)](P) =λ-conversion 

 

 λTλP.T(P) ∧ ∀x[KITTEN(x) → P(x)]  =λ-conversion 

 

 

 λTλP.T(P) ∧ ∀x[KITTEN(x) → P(x)](λZ.Z(RONYA)) =λ-conversion 

 

 λP.λZ.Z(RONYA))(P) ∧ ∀x[KITTEN(x) → P(x)] =λ-conversion 

 

 λP.P(RONYA) ∧ ∀x[KITTEN(x) → P(x)]  =λ-conversion 

 

 The set of properties that Ronya shares with every kitten 

 



11 

 

If we interpret ronya as RONYA we cannot use this scheme and would have to assume four 

schemas for DP conjunction (for the Boolean, distributive interpretations): 

 

 λyλxλP.P(x) ∧ P(y)  Ronya and Pim 

 λUλxλP.P(x) ∧ U(P)  Ronya and every kitten 

 λyλTλP.T(P) ∧ P(y)  Every kitten and ronya 

 λUλTλP.T(P) ∧ U(P)  Every kitten and some old cat 

  

 

3.3. Finding the meaning of hug every cat 

 

To complete Montague’s analysis of verbs and their arguments we need to solve one more 

equation.  Look at (3): 

 

(3) Anna hugged every cat 

       

                        IP 
 
  DP   I’ 
 
Anna  I  VP 
 
               e   V  DP 
 
             hug  DET  NP 
 
    every   cat 
 

The theory that we have given so far, gives us the following information: 

 

                        IP t ∀y[CAT(y) → HUG(ANNA,y)] 

 

  DP   I’ λx.∀y[CAT(y) → HUG(x,y)] 

 

Anna  I  VP <e,t> λx.∀y[CAT(y) → HUG(x,y)] 

λP.P(ANNA) 

               e   V  DP <<e,t>,t> λP.∀x[CAT(x) → P(x) 

           λP.P  

             hug  DET  NP 

 

    every   cat 

  λQλP.∀x[Q(x) → P(x)] CAT 

 

Just to repeat the top bit: 

 

We convert ANNA out in : 

 

∀y[CAT(y) → HUG(ANNA,y)] 
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which gives: 

 λx.∀y[CAT(y) → HUG(x,y)](ANNA) 

 

Then we convert  λx.∀y[CAT(y) → HUG(x,y)] out and get: 

 

 P(λP.ANNA)(λx.∀y[CAT(y) → HUG(x,y)]) 

 

Which gives λx.∀y[CAT(y) → HUG(x,y)] for the I’, as indicated. 

 

Ignoring all the irrelevant material, we have to find the interpretation for the following 

structure: 

 

    VP <e,t> λx.∀y[CAT(y) → HUG(x,y)] 

 

                 V  DP <<e,t>,t> λP.∀x[CAT(x) → P(x)] 

                        every cat  

             hug   

 

Now so far, we assumed that hug was interpreted as HUG ∈ CON<e,<e,t>>, and is the function 

on the complement DP.  That was ok when the DP was ronya  of  type e, but is a problem 

here, where the complement is every cat of type <<e,t>,t>. 

It won’t do to change the function-argument structure, because that doesn’t fit the input and 

output.  So we have no choice but to assume that hug is interpreted as the function, and that 

makes it a function of type <<<e,t>,t>,<e,t>> : 

 

    VP <e,t> λx.∀y[CAT(y) → HUG(x,y)] 

 

                 V  DP <<e,t>,t> λP.∀y[CAT(y) → P(y)] 

                        every cat  

             hug <<<e,t>,t>,<,et>>  

 

The interpretation of hug is a function that gobbles up a generalized quantifier, the set of 

properties that every cat has, and spits out a one place property, the property that you have if 

you hug every cat.  And out task is to find out what function that is. 

How do we do that? 

The answer is:  by solving the equation with backward λ-conversion: 

 

V(λP.∀y[CAT(y) → P(y)]) = λx.∀y[CAT(y) → HUG(x,y)] 

  

Solving this equation is more difficult than any of the ones we have seen before. 

Let us start by writing HUG(x,y) into its TL form: 

 

 

V(λP.∀y[CAT(y) → P(y)]) = λx.∀y[CAT(y) → [HUG(y)](x)] 

 

The problem is best addressed from the back: we want to get to an expression in which the V 

applies to the generalized quantifier: 

 

V(λP.∀y[CAT(y) → P(y)]) 
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We get there if we can massage λx.∀y[CAT(y) → [HUG(y)](x)]  into a form that has the 

generalized quantifier as a subexpressions: 

 

 .....[λP.∀y[CAT(y) → P(y)]].... 

 

because, then we can convert it out and get the right form: 

 

 λT...[T]...(λP.∀y[CAT(y) → P(y)]) 

 

i.e. then V = λT...[T]... 

 

Now we can massage λx.∀y[CAT(y) → [HUG(y)](x)]  into .....[λP.∀y[CAT(y) → P(y)]].... 

if we can massage into an expression that has for some α of type <e,t>  

∀y[CAT(y) → α(y)] as subformula: 

 

.....[∀y[CAT(y) → α(y)]].... 

 

Because then we can convert α out at the level of that subformula and get: 

 

.....[λP.∀y[CAT(y) → P(y)]](α).... 

 

which is exactly the right form to continue. 

 

So we look at: 

 

λx.∀y[CAT(y) → [HUG(y)](x)]  

  

and are looking for: 

 

   ...∀y[CAT(y) →                α(y)]  

 

 This is, what we call close, but no sigar.   

We want an expression of the form α(y), but what we have is an expression of the form α(x). 

And that is not good enough.   

What do we do? 

The answer is: we solve the equation with backward λ-convertion. 

 

 α(y) =  [HUG(y)](x) 

 

Convert y out:  replace it by variable z, abstract over z, and apply to y: 

 

 [HUG(y)](x) 

 [λz.HUG(z)](x)](y) 

 

In fact, we can write this in relational form to make it more legible: 

 

 [λz.HUG(x,z)](y) 

 

So λz.HUG(x,z) is the α we are looking for.   
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This is the missing link. Now we can write down the whole derivation: 

 

 

λx.∀y[CAT(y) → HUG(x,y)]   = [convert y out  

      by abstraction over z ∈ VARe] 

        

λx.∀y[CAT(y) → ([λz.HUG(x,z)](y)]) = [convert λz.HUG(x,z) out   

                    by abstraction over P ∈ VAR<e,t>] 

 

λx.([λP.∀y[CAT(y) → P(y)]](λz.HUG(x,z)) =[ convert λP.∀y[CAT(y) → P(y)] out] 

    by abstraction over T ∈ VAR<<e,t>,t>] 

 

[λTλx.T(λzHUG(x,z))](λP.∀y[CAT(y) → P(y)])  

 

Hence we derive as the interpretation of hug: 

 

hug → λTλx.T(λz.HUG(x,z)) 

 

Let’s check that the type is right: 

 

λz.HUG(x,z)  is of type <e,t> 

T(λz.HUG(x,z)) is of type t 

λx.T(λz.HUG(x,z)) is of type <e,t> 

λTλx.T(λz.HUG(x,z)) is of type <<<e,t>,t>,<e,t>> 

 

 

λTλx.T(λy.HUG(x,y)) is  

the relation that holds between individual x and set of properties T iff  

 being hugged by x is one of the properties in T 

 

So Anna stands in this relation to the set of all properties that every cat has  

if Being Hugged by Anna is one of the properties in that set, 

which is the case if Being Hugged by Anna is a property that every cat has 

which is the case if every cat is being hugged by Anna 

which is the case if Anna hugs every cat. 

 

 

λTλx.T(λy.R(x,y)) is the correct interpretation at the type <<<e,t>,t>,<e,t>> for all 

extensional- non-collective transitive verb interpretations R. 

 

The intuition is:  you want to hug an individual, but you feed hug a generalized quantifier.  

You can’t hug a generalized quantifier, so how do you express this in terms of hugging 

individuals.  The relation you want at type <<<e,t>,t>,<e,t>> is the relation  that is as close 

to the hug-relation at type <e,<e,t>> as possible. 

What does this mean? 

 

 1.  Extension:  Individual  RONYA at type e corresponds to generalized quantifier  

                 λP.P(RONYA) at type <<e,t>,t>.   

     The interpretation of HUG<<<e,t>,t>,<e,t>> should do with λP.P(RONYA) what  

      HUG<e,<e,t>> does with RONYA: 
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       HUG<<<e,t>,t>,<e,t>> (λP.P(RONYA)  = λx.HUG<e,<e,t>>(x,RONYA) 

 

This is of course the case: 

λTλx.T(λy.HUG(x,y))(λP.P(RONYA))  = 

λx.[λP.P(RONYA)(λy.HUG(x,y))]  = 

λx.[λy.HUG(x,y)(RONYA)]   = 

λx.HUG(x,RONYA) 

 

2.  Homomorphism: for all the other generalized quantifiers, you want their  

     behaviour to be lifted from the behaviour for generalized quantifiers  

      corresponding to individuals: 

 

Again this is the case: 

 

λTλx.T(λy.HUG(x,y))(λP.∀y[CAT(y) → P(y)]) = λx.∀y[CAT(y) → HUG(x,y)] 

 = λx.HUG(x,CAT1) ∧ HUG(x,CAT2) ∧ ... 

 

λTλx.T(λy.HUG(x,y))(λP.∃y[CAT(y) ∧ P(y)]) = λx.∃y[CAT(y) ∧ HUG(x,y)] 

 = λx.HUG(x,CAT1) ∨ HUG(x,CAT2) ∨ ... 

 

λTλx.T(λy.HUG(x,y))(λP.¬∃y[CAT(y) ∧ P(y)]) = λx.¬∃y[CAT(y) ∧ HUG(x,y)] 

 = λx.¬HUG(x,CAT1) ∧ ¬HUG(x,CAT2) ∧ ... 

 

Theorem:  for every relation R of type <e,<e,t>> (= extensional, non-collective, i.e. not seek  

        and not combine) there is exactly one relation, the homomorphism extending R,  

        that satisfies both these conditions, and that relation is λTλx.T(λy.R(x,y)). 

 

Connection with scope and distributivity: 

Syntactic tree of John kissed every girl: 
every girl is in the syntactic scope of kissed.   

 

Frege’s theory of quantifiers and relations (Begriffsschrift, 1879,introduction: do not 

interpret the object in situ, but give it semantic scope over the verb: 

y[girl(y) → kiss(j,y)]   

 

Montague’s observation:  we can do this without raising, the translation λTλx.T(λy.R(x,y)) 

does exactly that.  You see that in the TL expression:  If we apply this to the interpretation of 

the object, the generalized quantifier α, then α lands in the T position, taking semantics 

scope over relation R: 

 

Mismatch between syntactic scope and semantic scope: 

 

[hug    every cat ]   

 λTλx.T(λy.HUG(x,y)) λP.y[CAT(y) → P(y)] 
         

 

the object every cat is in the syntactic scope of the verb hug, but its interpretation gets 

converted into a ‘semantic position’ where it takes scope over the interpretation of the verb. 
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Let hug be HUG<e,<e,t>>  and let HUG be HUG<<<e,t>,t>,<e,t>> 

 

1.  HUG extends hug 

     For every d  De:  (HUG(λP.P(d)) = λx.hug(x,d) 

 

                <<e,t>,t>                                           

  

     

                                                                     

λP.P(r)   λP.P(e)   λx.hug(x,r)   λx.hug(x,e) 

 

                                                                     

                       

 

                                                              

         <e,t> 

 

                      r                                  e 

 

                    e 

 

2. Homomorphism: 

 

     HUG(λP.P(RONYA) ∨ P(EMMA)) = λx.hug(x,RONYA) ∨ hug(x,EMMA) 

     HUG(λP.P(RONYA) ∧ P(EMMA)) = λx.hug(x,RONYA) ∧ hug(x,EMMA) 

     HUG(λP.¬P(RONYA)) = λx.¬HUG(x,RONYA) 

 

  

 

                <<e,t>,t>                                               

  

λP.P(r)  P(e)     λx.hug(x,r)  hug(x,e) 

                                                                     

λP.P(r)   λP.P(e)   λx.hug(x,r)            λx.hug(x,e) 

 

                                                                     

                 λP.P(r)  P(e)     λx.hug(x,r)  hug(x,e) 

 

                                                                

         <e,t> 

 

                      r                                  e 

 

                    e 
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The theorem is a consequence of a deep theorem in Universal Algebra: the Fundamental 

Theorem for Free Algebras.  It so happens that D<<e,t>,t> is not just a Boolean algebra, but a 

free, freely generated, Boolean algebra, and so is, in general any domain D<<a,t>,t>, with a any 

type.  Free Algebras are (relative to their cardinality) the most general of their type.  This 

means that homomorphic extensions exist from any type<a,b> to type <<<a,t>,t>,b>. 

It is this structure that underlies Montague’s (and our more modern type shifting) analysis of 

relations and their arguments. 

 

 

 

3.4. Cross categorial negation, conjunction and disjunction. 

 

The Boolean operators not, and and or are cross-categorial, we find them across different 

syntactic categories, so we can conjoin sentences, VPs, DPs, but also, say, prepositions, as in 

drinks are served before and after the show.  We can in fact in some circumstances conjoin 

non-constituents if they are of the same semantic type, as in Ronya likes but Pim hates tuna.  

 When I say Boolean operations, I mean not, and, or with their standard Boolean 

interpretation.  I mean something very specific by that.   

 The Lifting Theorem tells us that if A is a set and B a Boolean algebra with 

operations ¬B, ∧B, ∨B , then the set of all functions form A into B, (A → B) forms a Boolean 

algebra under the operations ¬(A → B), ∧(A → B), ∨(A → B) that are lifted pointwise from B onto  

(A → B).  We have seen that the interpretation domains of all Boolean types in BOOL form 

Boolean algebras in this way.   

 

 BOOL is the smallest subset of TYPE such that: 

  1. t ∈ BOOL 

  2. If a ∈ TYPE and b ∈ BOOL then <a,b> ∈ BOOL 

 

Since e is not a Boolean type, but t is, the recursive definition of BOOL tells you that the 

Boolean operations on any Boolean type b ∈ BOOL, are ultimately lifted from ¬, ∧, ∨, i.e. 
¬t, ∧t, ∨t.   
 
We will later in this class see a different notion of conjunction, sum conjunction, which is 

not Boolean in this sense (because it is in essence related to ∪ and not to ∩, while Boolean 

conjunction is related to ∩, as we have seen).  But here we are only concerned with the 

connectives and their Boolean interpretation. 

 
For type a ∈ TYPE, let TREE[a] be the decomposition tree of a 

where:       <a,b>   

 

            a                 b 

 

Fact:  For any type a ∈ TYPE:  a ∈ BOOL iff the right branch in TREE[a] ends in t. 
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Example: 

 

TREE[<<e,t>,<<e,t>,t>>] =  <<e,t>,<<e,t>,t>>              

              

               <e,t>               <<e,t>,t>>  

           

                   e              t                 <e,t>                      t 

                           

                                                                       e              t 

 

What the Boolean structure tells us is that the Boolean interpretation of not, and, or at any 
Boolean type is, in essence, just ¬, ∧, ∨, but adjusted to the higher type. 
Given this, we may expect to be able to define a procedure telling us, for any Boolean type 

what the interpretation derived for ¬, ∧, ∨ are at that type.  In fact, there are various such 

procedures. We will give a particularly simple one here.  

Look at the example: 

 

TREE[<<e,t>,<<e,t>,t>>] =  <<e,t>,<<e,t>,t>>              

              

               <e,t>               <<e,t>,t>>  

           

                   e              t                 <e,t>                      t 

                           

                                                                       e              t 

 

We ask:  If we have a functional expression of type <<e,t>,<<e,t>,t> how do we get from 

there to t?  the answer is, by feeding it an expression of type <e,t>, and then feeding it 

another expression of type <e,t>, and presto, you are at t. 

 

Let us call this sequence of types the argument sequence of <<e,t>,<e,t>,t>>: 

 

ARG[<<e,t>,<<e,t>,t>>] = [<e,t> ― <e,t>] 

 

Rather than define it, I give an other example: 

 

TREE[<<e,t>,<e,t>>] =  <<e,t>,<e,t>> 

               

               <e,t>          <e,t> 

            

                   e                t         e               t 

 

ARG[<<e,t>,<e,t>>] = [<e,t> ― e] 

 

We can now specify the algorithm. 

Rather than giving the general form, I will give it for ARG[<<e,t>,<e,t>>] = [<e,t> ― e] 

 

ARG[<<e,t>,<e,t>>] = [<e,t> ― e] 
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Step 1:  For ¬ choose a variable of type <<e,t>,<e,t>>. 

              For ∧ and ∨ choose two different variables of type <<e,t>,<e,t>>. 

              For each type in ARG[<<e,t>,<e,t>>] choose a variable of that type. 

   In general, choose different variables if a type occurs more than once in ARG[a]. 

 

ARG[<<e,t>,<e,t>>] = [<e,t> ― e] 

         V               P          x 

         W       P          x 

 

Step 2: Apply each variable to its neighbour, left to right: 

    

ARG[<<e,t>,<e,t>>] = [<e,t> ― e] 

         V               P          x ⇒ ((V(P))(x))   of type t 

         W       P          x ⇒ ((W(P))(x))   of type t 

 

Step 3:  Apply ¬, ∧, ∨ to this at type t. 

 

ARG[<<e,t>,<e,t>>] = [<e,t> ― e] 

         V               P          x ⇒ ¬(V(P))(x)    

         W       P           x         (V(P))(x) ∧ (W(P))(x)    

             (V(P))(x) ∨ (W(P))(x) 

 

Step 4: Abstract over  the all the variables in inverse order   

ARG[<<e,t>,<e,t>>] = [<e,t> ― e] 

         V               P          x ⇒          λV.λPλx¬(V(P))(x)    

         W       P           x         λWλV.λPλx(V(P))(x) ∧ (W(P))(x)   

             λWλV.λPλx.(V(P))(x) ∨ (W(P))(x) 

The intuition is:   

¬ takes an input of type <<e,t>,<e,t>>: V        and maps it onto an output of the same type 

∧,∨ take two inputs of type <<e,t>,<e,t>>:  V, W and maps it onto an output of the same type 

 

You get the contents of the output, by bringing the input variables down to type t by 

application to variables:  (V(P))(x)   and (W(P))(x).   

To those you can apply the Boolean connectives at type t,  

and by abstracting over the variables used, you get the correct output of type <<e,t>,<e,t>>.   

 

Let us apply it to a familiar type, to see that indeed we get the right result: 

 

ARG[<e,<e,t>>] = [e ― e] 

      R         y      x ⇒ (R(y))(x) 

      S             y      x  (S(y))(x) 

We form:       λRλyλx.¬(R(y))(x) 

                    λSλRλyλx.(R(y))(x) ∧ (S(y))(x) 

                    λSλRλyλx.(R(y))(x) ∨ (S(y))(x) 

 

or in relational notation: 

                     λRλyλx.¬R(x,y) 

                    λSλRλyλx.R(x,y) ∧ S(x,y) 

                    λSλRλyλx.R(x,y) ∨ S(x,y) 
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3.5. Tarski’s Trick: Defining in type logic all logical operations in terms of application, 

       abstraction and identity 

 

Theorem:  You can, without loosing anything restrict the type logical language to include  

                    only expressions  built from constants and variables with functional application, 

        functional abstraction and identity.  Everything else can be defined in this  

        language. 

 

Proof: 

 

There are two objects of type t, namely 1 and 0, and there are four functions of type <t,t>,  

namely the identity function  ID = {<0,0>, <1,1>}, the constant function on 1  

C1 =  {<0,1>, <1,1>}, the constant function on 0, C0 = {<0,0>, <1,0>} and negation  

¬ = {<0,1>, <1,0>}.  

 

We start by finding expressions of type logic denoting each of these.  

Of course, these should all be expressions that only uses variables, application, abstraction  

and identity. 

 

Let α ∈ VARt. 

 

We define:  

 

ID :=  λα.α  
 
This is an expression of type <t,t>, and it denotes the identity function at type <t,t>, i.e. 

function {<1,1>,<0,0>}. 

 

Next we define:  

 

1 :=  (λα.α = λα.α) 

 

This is an expression of type t, and it is a tautology, so indeed it denotes 1. 

 

Note now that since we have defined 1 in the logical language, we can use 1 to define the 

others (replace it by its definition if you want to see only application, lambdas and identity). 

 

Next is the constant function on 1: 

 

C1 := λα.1 

 

This is an expression of type <t,t>, and it denotes the constant function on 1:  it maps every 

α onto a tautology, which means that it maps 0 and 1 onto 1. 

 

Now we can use what we have so far to define 0: 

 

0 :=  (λα.α = λα.1)    

 

Since λα.α denotes the identity function and λα.1 denotes the constant function on 1,  

they are different function, and stating that they are the same function is a contradiction, 0. 



21 

 

¬ :=   λα.(α = 0)    

 

The claim is that λα.(α = 0) denotes negation. 

This can be seen with λ-conversion: 

 

 λα.(α=0)(0)  =λ-conversion 

 (0 = 0)  = 

 1 

 

 λα.(α=0)(1)  =λ-conversion 

 (1 = 0)  = 

 0 

 

So indeed, λα.(α=0) maps 0 onto 1 and 1 onto 0, so it is negation. 

 

Finally: 

 

C0 :=  λα.0 

 

This is, by now, obvious. 

 

So indeed we have defined 0, 1 and the four truth functions by using only variables, 

application, abstraction, and identity. 

 

Our next step is to define the universal quantifier. 

 

If x ∈ VARa and φ ∈ EXPt and φ is definable with constants, variables, application, 

abstraction and identity, we want to define ∀xφ with variables, application, abstraction and 

identity. 

We do this by first defining an expression that for any type a denotes Da. 

 

Let x ∈ VARa. 

  

Da := λx.1  
 
⟦λx.1⟧M,g = that function h:Da → {0,1} such that for every d ∈ Da: h(d)=1. 

 

The set characterized by this function is, of course, indeed Da. 

 
Now assume that φ is an expression that is definable with only constants, variables, 

application, abstraction and identity.  We define: 

 

∀xφ :=  (λx.φ = λx.1)  

 
⟦ λx.φ = λx.1 ⟧M,g = 1 iff {d ∈ Da: ⟦φ⟧M,gx

d = 1} = Da 

                                                     iff  for every d ∈ Da: ⟦φ⟧M,gx
d = 1 

 

The idea is:  the set of entities in domain Da that have property φ is the whole domain Da iff 

                     every entity in Da has property φ. 
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With this, we, of course define ∃xφ in the usual way: 

 

∃xφ :=  ¬∀x¬φ. 
 

All of these definitions are relatively straightforward.   

And we are almost there: if we can define conjunction, φ ∧ ψ, by using only variables, 

application, abstraction and identity, we are done, because then we can define disjunction in 

the usual way as: 

 

(φ ∨ ψ) := ¬(¬φ ∧ ¬ψ) 

 

So we have only conjunction left. 

 

And that is much more difficult, in fact, difficult enough that Tarski in essence got his MA in 

1923 for solving this.  Here is the definition that in essence goes back to Tarski’s MA thesis 

(although the setting was not functional type theory, because that didn’t exist yet). 

 

Assume that φ and ψ are expressions of type t, defined only with constants, variables, 

application, abstraction and identity. 

 

Let f ∈ VAR<t,t> ⟦ 

 

We define: 
 
(φ ∧ ψ) :=   ∀f[ (f(φ) = f(ψ)) = ψ ] 

 
We want to show that the formula ∀f[ (f(φ) = f(ψ)) = ψ ] has exactly the same truth 

conditions as (φ ∧ ψ) does. 

 

∀f[ (f(φ) = f(ψ)) = ψ ] is true relative to M,g  

 

iff  

 

f(φ) = f(ψ)) = ψ is true relative to M,gf
d, for each d ∈ D<t,t> 

 

iff  

 

f(φ) = f(ψ)) = ψ is true relative to M,gf
ID and 

f(φ) = f(ψ)) = ψ is true relative to M,gf
C1 and 

f(φ) = f(ψ)) = ψ is true relative to M,gf
C0 and 

f(φ) = f(ψ)) = ψ is true relative to M,gf
¬  

 

Since we have defined these four operations in the language, we get the following 

equivalence: 
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f(φ) = f(ψ)) = ψ is true relative to M,gf
ID and 

f(φ) = f(ψ)) = ψ is true relative to M,gf
C1 and 

f(φ) = f(ψ)) = ψ is true relative to M,gf
C0 and 

f(φ) = f(ψ)) = ψ is true relative to M,gf
¬  

 

iff 

 

[(ID(φ) = ID(ψ)) = ψ]  is true relative to M,g and  

[(C1(φ) = C1(ψ)) = ψ]   is true relative to M,g and  

[(C0(φ) = C0(ψ)) = ψ]   is true relative to M,g and  

[(¬(φ) = ¬(ψ))   = ψ]    is true relative to M,g  

 

Now we can fill in the definitions of these four functional expressions: 

 

[(ID(φ) = ID(ψ)) = ψ]  and  

[(C1(φ) = C1(ψ)) = ψ]   and  

[(C0(φ) = C0(ψ)) = ψ]   and  

[(¬(φ) = ¬(ψ))   = ψ]    are true relative to M,g 

 

  iff 

 

[(λα.α(φ) = λα.α(ψ)) = ψ] and   

[(λα.1(φ) = λα.1(ψ)) = ψ] and 

[(λα.0(φ) = λα.0(ψ)) = ψ] and 

[(¬φ = ¬ψ)   = ψ]       are true relative to M,g 

 

And we can simplify this with λ-conversion: 

 

[(λα.α(φ) = λα.α(ψ)) = ψ] and   

[(λα.1(φ) = λα.1(ψ)) = ψ] and 

[(λα.0(φ) = λα.0(ψ)) = ψ] and 

[(¬φ = ¬ψ)   = ψ]       are true relative to M,g 

 

iff 

 

[(φ = ψ) = ψ]          and 

[(1 =  1) = ψ]          and  

[(0 = 0) = ψ]           and 

[(¬φ = ¬ψ)  = ψ]    are true relative to M,g 

 

Observation 1:              (φ = ψ)      and (¬φ = ¬ψ)  are logically equivalent 

                          Hence (φ = ψ) = ψ and (¬φ = ¬ψ)  = ψ are logically equivalent 
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so: 

 

[(φ = ψ) = ψ]          and 

[(1 =  1) = ψ]          and  

[(0 = 0) = ψ]           and 

[(¬φ = ¬ψ)  = ψ]    are true relative to M,g 

 

iff 

 

[(φ = ψ) = ψ]  and 

[(1 =  1) = ψ]  and 

[(0 = 0) = ψ]   are true relative to M,g 

 

Observation 2:  (1 = 1) is logically equivalent to 1 

                          (0 = 0) is logically equivalent to 1   

                          This means that both get simplified to (1 = ψ), and one drops out, 

 

[(φ = ψ) = ψ]  and 

[(1 =  1) = ψ]  and 

[(0 = 0) = ψ]   are true relative to M,g 

 

iff  

 

[(φ = ψ) = ψ]  and 

[1  = ψ]           are true relative to M,g 

 

Observation 3:  (1 = ψ) is logically equivalent to ψ:   

(1 = ψ) is true (denotes 1) if ψ denotes 1, (1 = ψ) is false (denotes 0) if ψ denotes 0. 

So:  

 

[(φ = ψ) = ψ]  and 

[1  = ψ]           are true relative to M,g 

 

iff  

 

[(φ = ψ) = ψ] and 

ψ             are true relative to M,g 

 

This is as far as we have gotten. We have shown that: 

 

∀f[ (f(φ) = f(ψ)) = ψ ]  is true relative to M,g 

 

iff    [(φ = ψ) = ψ] is true relative to M,g and ψ  is true relative to M,g 
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Now look at the truth table for (φ = ψ) = ψ: 

 

φ  ψ (φ = ψ)             (φ = ψ) =ψ    

1 1 1  1  

1 0 0  1 

0 1 0  0 

0 0 1  0 

 

We see that [(φ = ψ) =ψ]  and φ are equivalent and hence we have proved that: 

 

 
∀f[ (f(φ) = f(ψ)) = ψ ]  is true relative to M,g iff     

φ is true relative to M,g and ψ  is true relative to M,g 

 

So indeed we can define conjunction as: 

 

(φ ∧ ψ) :=   ∀f[ (f(φ) = f(ψ)) = ψ ] 

 

And with that we have completed our proof:  all type logical expressions can be defined by 

type logical expressions that only use constants, variables, functional application, functional 

abstraction and identity. 

 

It should be clear that identity plays a crucial role in these considerations:  the power of the 

theory lies in the combined power of abstraction and identity, and identity itself cannot be 

defined with just application and abstraction. 
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3.5. Undefinedness 

 

I will end this chapter by introducing one thing that isn’t part of classical type theory, but 

that we had in Foundations and that will be useful here too:  the possibility that the 

denotation of wellformed expressions is undefined. 

 

1. We add to the model a set of undefined objects {⏊a: a ∈ TYPE} with the 

     conditions: 

     1a:  if a, b ∈ TYPE and a ≠ b then ⏊a ≠ ⏊b 

       1b:  if a, b ∈ TYPE then ⏊a ∉ Db 

 

2. For every type a ∈ TYPE, Da
⏊ = Da ∪ {⏊a} 

 

TL is a theory of total function:   

D<a,b>  = (Da → Db), the set of all total function from domain Da into Db. 

(Da → Db
⏊ ) is the set of all partial functions from domain Da into Db, functions that are 

allowed to be undefined for certain arguments.   

 

Jansen 1982 shows that the proper way of extending type theory to include partial functions 

is to include undefined objects and operate on the domains Da
⏊ in general.  

Jansen shows that this way of extending TL preserves the principle of λ-conversion (while 

dealing with undefinedness without having undefined objects does not). 

 

I will not formulate the more general type theory, but allow functions to be undefined. In 

particular, I will add to the type theory the definiteness operation α from Foundations, first 

for singular predicates, later redefined for plurality. 

 

For definiteness we add to the theory the following: 

 

 Definiteness: 

 For every type a ∈ TYPE: σa ∈ CON<<a,t>,t> 

 FM(σa)  is σa: D<a,t> → Da
⏊   

   

 where σa is the function such that for every X ∈ D<a,t> 

 

       x  if char(X) = {x} 

 σa(X) =   

      ⊥a  otherwise 

 

We will mostly be concerned with σe  and drop the superscript.   

 

If CAT ∈ D<e,t> then σe(CAT) = RONYA iff {d ∈ De: CAT(d) = 1} = {RONYA} 

 

 

 


